GET IN TOUCH WITH PAKKO, CREATIVE DIRECTOR ALIGNED FOR THE FUTURE OF CREATIVITY.
PAKKO@PAKKO.ORG

LA | DUBAI | NY | CDMX

PLAY PC GAMES? ADD ME AS A FRIEND ON STEAM

 


Back to Top

Pakko De La Torre // Creative Director

Sensors | Free Full-Text | An Augmented Reality-Assisted Prognostics and Health Management System Based on Deep Learning for IoT-Enabled Manufacturing

Sensors | Free Full-Text | An Augmented Reality-Assisted Prognostics and Health Management System Based on Deep Learning for IoT-Enabled Manufacturing

Feature Papers represent the most advanced research with significant potential for high impact in the field. Feature
Papers are submitted upon individual invitation or recommendation by the scientific editors and undergo peer review
prior to publication.

The Feature Paper can be either an original research article, a substantial novel research study that often involves
several techniques or approaches, or a comprehensive review paper with concise and precise updates on the latest
progress in the field that systematically reviews the most exciting advances in scientific literature. This type of
paper provides an outlook on future directions of research or possible applications.

With increasingly advanced Internet of Things (IoT) technology, the composition of workshop equipment has become more and more complex. Based on this, the rate of system performance degradation and the probability of fault have both increased. Owing to this, not only has the difficulty of constructing the remaining useful life (RUL) model increased but also the improvement in speed of maintenance personnel cannot keep up with the speed of equipment replacement. Therefore, an augmented reality (AR)-assisted prognostics and health management system based on deep learning for IoT-enabled manufacturing is proposed in this paper. Firstly, the feature extraction model based on Convolutional Neural Network-Particle Swarm Optimization (PSO-CNN) is proposed with the purpose of excavating the internal associations in large amounts of production data. Based on this, the high-accuracy RUL prediction is accomplished by Gate Recurrent Unit (GRU)-attention, which can capture the long-term and short-term dependencies of time series and successfully solve the gradient disappearance problem of RNN. Moreover, more attention will be paid to important content with the help of the attention mechanism. Additionally, high-efficiency maintenance guidance and visible instructions can be accomplished by AR. On top of this, the remote expert can offer help when maintenance personnel encounters tough problems. Finally, a real case was implemented in a typical IoT-enabled workshop, which validated the effectiveness of the proposed approach.
Keywords:
augmented reality; PSO-CNN; GRU-attention; RUL prediction; IoT-enabled manufacturing
augmented reality; PSO-CNN; GRU-attention; RUL prediction; IoT-enabled manufacturing

This content was originally published here.