GET IN TOUCH WITH PAKKO, CREATIVE DIRECTOR ALIGNED FOR THE FUTURE OF CREATIVITY.
PAKKO@PAKKO.ORG

LA | DUBAI | NY | CDMX

PLAY PC GAMES? ADD ME AS A FRIEND ON STEAM

 


Back to Top

Pakko De La Torre // Creative Director

Sensors | Free Full-Text | Operational State Recognition of a DC Motor Using Edge Artificial Intelligence

Sensors | Free Full-Text | Operational State Recognition of a DC Motor Using Edge Artificial Intelligence

Edge artificial intelligence (EDGE-AI) refers to the execution of artificial intelligence algorithms on hardware devices while processing sensor data/signals in order to extract information and identify patterns, without utilizing the cloud. In the field of predictive maintenance for industrial applications, EDGE-AI systems can provide operational state recognition for machines and production chains, almost in real time. This work presents two methodological approaches for the detection of the operational states of a DC motor, based on sound data. Initially, features were extracted using an audio dataset. Two different Convolutional Neural Network (CNN) models were trained for the particular classification problem. These two models are subject to post-training quantization and an appropriate conversion/compression in order to be deployed to microcontroller units (MCUs) through utilizing appropriate software tools. A real-time validation experiment was conducted, including the simulation of a custom stress test environment, to check the deployed models’ performance on the recognition of the engine’s operational states and the response time for the transition between the engine’s states. Finally, the two implementations were compared in terms of classification accuracy, latency, and resource utilization, leading to promising results.

This content was originally published here.