GET IN TOUCH WITH PAKKO, CREATIVE DIRECTOR ALIGNED FOR THE FUTURE OF CREATIVITY.
PAKKO@PAKKO.ORG

LA | DUBAI | NY | CDMX

PLAY PC GAMES? ADD ME AS A FRIEND ON STEAM

 


Back to Top

Pakko De La Torre // Creative Director

Sensors | Free Full-Text | Three-Dimensional Engine-Based Geometric Model Optimization Algorithm for BIM Visualization with Augmented Reality

Sensors | Free Full-Text | Three-Dimensional Engine-Based Geometric Model Optimization Algorithm for BIM Visualization with Augmented Reality

Feature Papers represent the most advanced research with significant potential for high impact in the field. Feature
Papers are submitted upon individual invitation or recommendation by the scientific editors and undergo peer review
prior to publication.

The Feature Paper can be either an original research article, a substantial novel research study that often involves
several techniques or approaches, or a comprehensive review paper with concise and precise updates on the latest
progress in the field that systematically reviews the most exciting advances in scientific literature. This type of
paper provides an outlook on future directions of research or possible applications.

Building information modeling (BIM), a common technology contributing to information processing, is extensively applied in construction fields. BIM integration with augmented reality (AR) is flourishing in the construction industry, as it provides an effective solution for the lifecycle of a project. However, when applying BIM to AR data transfer, large and complicated models require large storage spaces, increase the model transfer time and data processing workload during rendering, and reduce visualization efficiency when using AR devices. The geometric optimization of the model using mesh reconstruction is a potential solution that can reduce the required storage while maintaining the shape of the components. In this study, a 3D engine-based mesh reconstruction algorithm that can pre-process BIM shape data and implement an AR-based full-size model is proposed, which is likely to increase the efficiency of decision making and project processing for construction management. As shown in the experimental validation, the proposed algorithm significantly reduces the number of vertices, triangles, and storage for geometric models while maintaining the overall shape. Moreover, the model elements and components of the optimized model have the same visual quality as the original model; thus, a high performance can be expected for BIM visualization in AR devices.
Keywords:
building information modeling (BIM); augmented reality (AR); mesh reconstruction; geometric model optimization; 3D engine
building information modeling (BIM); augmented reality (AR); mesh reconstruction; geometric model optimization; 3D engine

This content was originally published here.